Comprehensive PBPK Model of Rifampicin for Quantitative Prediction of Complex Drug‐Drug Interactions: CYP3A/2C9 Induction and OATP Inhibition Effects
نویسندگان
چکیده
This study aimed to construct a physiologically based pharmacokinetic (PBPK) model of rifampicin that can accurately and quantitatively predict complex drug-drug interactions (DDIs) involving its saturable hepatic uptake and auto-induction. Using in silico and in vitro parameters, and reported clinical pharmacokinetic data, rifampicin PBPK model was built and relevant parameters for saturable hepatic uptake and UDP-glucuronosyltransferase (UGT) auto-induction were optimized by fitting. The parameters for cytochrome P450 (CYP) 3A and CYP2C9 induction by rifampicin were similarly optimized using clinical DDI data with midazolam and tolbutamide as probe substrates, respectively. For validation, our current PBPK model was applied to simulate complex DDIs with glibenclamide (a substrate of CYP3A/2C9 and hepatic organic anion transporting polypeptides (OATPs)). Simulated results were in quite good accordance with the observed data. Altogether, our constructed PBPK model of rifampicin demonstrates the robustness and utility in quantitatively predicting CYP3A/2C9 induction-mediated and/or OATP inhibition-mediated DDIs with victim drugs.
منابع مشابه
Quantitative prediction of repaglinide-rifampicin complex drug interactions using dynamic and static mechanistic models: delineating differential CYP3A4 induction and OATP1B1 inhibition potential of rifampicin.
Repaglinide is mainly metabolized by cytochrome P450 enzymes CYP2C8 and CYP3A4, and it is also a substrate to a hepatic uptake transporter, organic anion transporting polypeptide (OATP)1B1. The purpose of this study is to predict the dosing time-dependent pharmacokinetic interactions of repaglinide with rifampicin, using mechanistic models. In vitro hepatic transport of repaglinide, characteriz...
متن کاملModeling of Rifampicin-Induced CYP3A4 Activation Dynamics for the Prediction of Clinical Drug-Drug Interactions from In Vitro Data
Induction of cytochrome P450 3A4 (CYP3A4) expression is often implicated in clinically relevant drug-drug interactions (DDI), as metabolism catalyzed by this enzyme is the dominant route of elimination for many drugs. Although several DDI models have been proposed, none have comprehensively considered the effects of enzyme transcription/translation dynamics on induction-based DDI. Rifampicin is...
متن کاملPrediction of Drug-Drug Interactions with Crizotinib as the CYP3A Substrate Using a Physiologically Based Pharmacokinetic Model.
An orally available multiple tyrosine kinase inhibitor, crizotinib (Xalkori), is a CYP3A substrate, moderate time-dependent inhibitor, and weak inducer. The main objectives of the present study were to: 1) develop and refine a physiologically based pharmacokinetic (PBPK) model of crizotinib on the basis of clinical single- and multiple-dose results, 2) verify the crizotinib PBPK model from criz...
متن کاملDmd050583 966..974
Repaglinide is mainly metabolized by cytochrome P450 enzymes CYP2C8 and CYP3A4, and it is also a substrate to a hepatic uptake transporter, organic anion transporting polypeptide (OATP)1B1. The purpose of this study is to predict the dosing time–dependent pharmacokinetic interactions of repaglinide with rifampicin, using mechanistic models. In vitro hepatic transport of repaglinide, characteriz...
متن کاملCytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions.
Although many of the clinically significant drug interactions of the anti-human immunodeficiency virus (HIV) protease inhibitors (PIs) can be explained by their propensity to inactivate CYP3A enzymes, paradoxically these drugs cause (or lack) interactions with CYP3A substrates that cannot be explained by this mechanism (e.g., alprazolam). To better understand these paradoxical interactions (or ...
متن کامل